(0) Obligation:
Clauses:
mul(X1, 0, Z) :- ','(!, eq(Z, 0)).
mul(X, Y, Z) :- ','(p(Y, P), ','(mul(X, P, V), add(X, V, Z))).
add(X, 0, Z) :- ','(!, eq(Z, X)).
add(X, Y, Z) :- ','(p(Y, V), ','(add(X, V, W), p(Z, W))).
p(0, 0).
p(s(X), X).
eq(X, X).
Query: mul(g,g,a)
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph DT10.
(2) Obligation:
Triples:
mulA(X1, s(X2), X3) :- mulA(X1, X2, X4).
mulA(X1, s(X2), X3) :- ','(mulcA(X1, X2, X4), addB(X1, X4, X3)).
addB(X1, s(X2), X3) :- addB(X1, X2, X4).
mulC(X1, s(X2), X3) :- mulA(X1, X2, X4).
mulC(X1, s(X2), X3) :- ','(mulcA(X1, X2, s(X4)), addB(X1, X4, X5)).
Clauses:
mulcA(X1, 0, 0).
mulcA(X1, s(X2), X3) :- ','(mulcA(X1, X2, X4), addcB(X1, X4, X3)).
addcB(X1, 0, X1).
addcB(X1, s(X2), 0) :- addcB(X1, X2, 0).
addcB(X1, s(X2), s(X3)) :- addcB(X1, X2, X3).
Afs:
mulC(x1, x2, x3) = mulC(x1, x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes:
mulC_in: (b,b,f)
mulA_in: (b,b,f)
mulcA_in: (b,b,f)
addcB_in: (b,b,f) (b,b,b)
addB_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
MULC_IN_GGA(X1, s(X2), X3) → U5_GGA(X1, X2, X3, mulA_in_gga(X1, X2, X4))
MULC_IN_GGA(X1, s(X2), X3) → MULA_IN_GGA(X1, X2, X4)
MULA_IN_GGA(X1, s(X2), X3) → U1_GGA(X1, X2, X3, mulA_in_gga(X1, X2, X4))
MULA_IN_GGA(X1, s(X2), X3) → MULA_IN_GGA(X1, X2, X4)
MULA_IN_GGA(X1, s(X2), X3) → U2_GGA(X1, X2, X3, mulcA_in_gga(X1, X2, X4))
U2_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → U3_GGA(X1, X2, X3, addB_in_gga(X1, X4, X3))
U2_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → ADDB_IN_GGA(X1, X4, X3)
ADDB_IN_GGA(X1, s(X2), X3) → U4_GGA(X1, X2, X3, addB_in_gga(X1, X2, X4))
ADDB_IN_GGA(X1, s(X2), X3) → ADDB_IN_GGA(X1, X2, X4)
MULC_IN_GGA(X1, s(X2), X3) → U6_GGA(X1, X2, X3, mulcA_in_gga(X1, X2, s(X4)))
U6_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, s(X4))) → U7_GGA(X1, X2, X3, addB_in_gga(X1, X4, X5))
U6_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, s(X4))) → ADDB_IN_GGA(X1, X4, X5)
The TRS R consists of the following rules:
mulcA_in_gga(X1, 0, 0) → mulcA_out_gga(X1, 0, 0)
mulcA_in_gga(X1, s(X2), X3) → U9_gga(X1, X2, X3, mulcA_in_gga(X1, X2, X4))
U9_gga(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → U10_gga(X1, X2, X3, addcB_in_gga(X1, X4, X3))
addcB_in_gga(X1, 0, X1) → addcB_out_gga(X1, 0, X1)
addcB_in_gga(X1, s(X2), 0) → U11_gga(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, 0, X1) → addcB_out_ggg(X1, 0, X1)
addcB_in_ggg(X1, s(X2), 0) → U11_ggg(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, s(X2), s(X3)) → U12_ggg(X1, X2, X3, addcB_in_ggg(X1, X2, X3))
U12_ggg(X1, X2, X3, addcB_out_ggg(X1, X2, X3)) → addcB_out_ggg(X1, s(X2), s(X3))
U11_ggg(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_ggg(X1, s(X2), 0)
U11_gga(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_gga(X1, s(X2), 0)
addcB_in_gga(X1, s(X2), s(X3)) → U12_gga(X1, X2, X3, addcB_in_gga(X1, X2, X3))
U12_gga(X1, X2, X3, addcB_out_gga(X1, X2, X3)) → addcB_out_gga(X1, s(X2), s(X3))
U10_gga(X1, X2, X3, addcB_out_gga(X1, X4, X3)) → mulcA_out_gga(X1, s(X2), X3)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
mulA_in_gga(
x1,
x2,
x3) =
mulA_in_gga(
x1,
x2)
mulcA_in_gga(
x1,
x2,
x3) =
mulcA_in_gga(
x1,
x2)
0 =
0
mulcA_out_gga(
x1,
x2,
x3) =
mulcA_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4) =
U9_gga(
x1,
x2,
x4)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
addcB_in_gga(
x1,
x2,
x3) =
addcB_in_gga(
x1,
x2)
addcB_out_gga(
x1,
x2,
x3) =
addcB_out_gga(
x1,
x2,
x3)
U11_gga(
x1,
x2,
x3) =
U11_gga(
x1,
x2,
x3)
addcB_in_ggg(
x1,
x2,
x3) =
addcB_in_ggg(
x1,
x2,
x3)
addcB_out_ggg(
x1,
x2,
x3) =
addcB_out_ggg(
x1,
x2,
x3)
U11_ggg(
x1,
x2,
x3) =
U11_ggg(
x1,
x2,
x3)
U12_ggg(
x1,
x2,
x3,
x4) =
U12_ggg(
x1,
x2,
x3,
x4)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
addB_in_gga(
x1,
x2,
x3) =
addB_in_gga(
x1,
x2)
MULC_IN_GGA(
x1,
x2,
x3) =
MULC_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
MULA_IN_GGA(
x1,
x2,
x3) =
MULA_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
ADDB_IN_GGA(
x1,
x2,
x3) =
ADDB_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4) =
U7_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULC_IN_GGA(X1, s(X2), X3) → U5_GGA(X1, X2, X3, mulA_in_gga(X1, X2, X4))
MULC_IN_GGA(X1, s(X2), X3) → MULA_IN_GGA(X1, X2, X4)
MULA_IN_GGA(X1, s(X2), X3) → U1_GGA(X1, X2, X3, mulA_in_gga(X1, X2, X4))
MULA_IN_GGA(X1, s(X2), X3) → MULA_IN_GGA(X1, X2, X4)
MULA_IN_GGA(X1, s(X2), X3) → U2_GGA(X1, X2, X3, mulcA_in_gga(X1, X2, X4))
U2_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → U3_GGA(X1, X2, X3, addB_in_gga(X1, X4, X3))
U2_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → ADDB_IN_GGA(X1, X4, X3)
ADDB_IN_GGA(X1, s(X2), X3) → U4_GGA(X1, X2, X3, addB_in_gga(X1, X2, X4))
ADDB_IN_GGA(X1, s(X2), X3) → ADDB_IN_GGA(X1, X2, X4)
MULC_IN_GGA(X1, s(X2), X3) → U6_GGA(X1, X2, X3, mulcA_in_gga(X1, X2, s(X4)))
U6_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, s(X4))) → U7_GGA(X1, X2, X3, addB_in_gga(X1, X4, X5))
U6_GGA(X1, X2, X3, mulcA_out_gga(X1, X2, s(X4))) → ADDB_IN_GGA(X1, X4, X5)
The TRS R consists of the following rules:
mulcA_in_gga(X1, 0, 0) → mulcA_out_gga(X1, 0, 0)
mulcA_in_gga(X1, s(X2), X3) → U9_gga(X1, X2, X3, mulcA_in_gga(X1, X2, X4))
U9_gga(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → U10_gga(X1, X2, X3, addcB_in_gga(X1, X4, X3))
addcB_in_gga(X1, 0, X1) → addcB_out_gga(X1, 0, X1)
addcB_in_gga(X1, s(X2), 0) → U11_gga(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, 0, X1) → addcB_out_ggg(X1, 0, X1)
addcB_in_ggg(X1, s(X2), 0) → U11_ggg(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, s(X2), s(X3)) → U12_ggg(X1, X2, X3, addcB_in_ggg(X1, X2, X3))
U12_ggg(X1, X2, X3, addcB_out_ggg(X1, X2, X3)) → addcB_out_ggg(X1, s(X2), s(X3))
U11_ggg(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_ggg(X1, s(X2), 0)
U11_gga(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_gga(X1, s(X2), 0)
addcB_in_gga(X1, s(X2), s(X3)) → U12_gga(X1, X2, X3, addcB_in_gga(X1, X2, X3))
U12_gga(X1, X2, X3, addcB_out_gga(X1, X2, X3)) → addcB_out_gga(X1, s(X2), s(X3))
U10_gga(X1, X2, X3, addcB_out_gga(X1, X4, X3)) → mulcA_out_gga(X1, s(X2), X3)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
mulA_in_gga(
x1,
x2,
x3) =
mulA_in_gga(
x1,
x2)
mulcA_in_gga(
x1,
x2,
x3) =
mulcA_in_gga(
x1,
x2)
0 =
0
mulcA_out_gga(
x1,
x2,
x3) =
mulcA_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4) =
U9_gga(
x1,
x2,
x4)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
addcB_in_gga(
x1,
x2,
x3) =
addcB_in_gga(
x1,
x2)
addcB_out_gga(
x1,
x2,
x3) =
addcB_out_gga(
x1,
x2,
x3)
U11_gga(
x1,
x2,
x3) =
U11_gga(
x1,
x2,
x3)
addcB_in_ggg(
x1,
x2,
x3) =
addcB_in_ggg(
x1,
x2,
x3)
addcB_out_ggg(
x1,
x2,
x3) =
addcB_out_ggg(
x1,
x2,
x3)
U11_ggg(
x1,
x2,
x3) =
U11_ggg(
x1,
x2,
x3)
U12_ggg(
x1,
x2,
x3,
x4) =
U12_ggg(
x1,
x2,
x3,
x4)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
addB_in_gga(
x1,
x2,
x3) =
addB_in_gga(
x1,
x2)
MULC_IN_GGA(
x1,
x2,
x3) =
MULC_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
MULA_IN_GGA(
x1,
x2,
x3) =
MULA_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
ADDB_IN_GGA(
x1,
x2,
x3) =
ADDB_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4) =
U7_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADDB_IN_GGA(X1, s(X2), X3) → ADDB_IN_GGA(X1, X2, X4)
The TRS R consists of the following rules:
mulcA_in_gga(X1, 0, 0) → mulcA_out_gga(X1, 0, 0)
mulcA_in_gga(X1, s(X2), X3) → U9_gga(X1, X2, X3, mulcA_in_gga(X1, X2, X4))
U9_gga(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → U10_gga(X1, X2, X3, addcB_in_gga(X1, X4, X3))
addcB_in_gga(X1, 0, X1) → addcB_out_gga(X1, 0, X1)
addcB_in_gga(X1, s(X2), 0) → U11_gga(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, 0, X1) → addcB_out_ggg(X1, 0, X1)
addcB_in_ggg(X1, s(X2), 0) → U11_ggg(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, s(X2), s(X3)) → U12_ggg(X1, X2, X3, addcB_in_ggg(X1, X2, X3))
U12_ggg(X1, X2, X3, addcB_out_ggg(X1, X2, X3)) → addcB_out_ggg(X1, s(X2), s(X3))
U11_ggg(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_ggg(X1, s(X2), 0)
U11_gga(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_gga(X1, s(X2), 0)
addcB_in_gga(X1, s(X2), s(X3)) → U12_gga(X1, X2, X3, addcB_in_gga(X1, X2, X3))
U12_gga(X1, X2, X3, addcB_out_gga(X1, X2, X3)) → addcB_out_gga(X1, s(X2), s(X3))
U10_gga(X1, X2, X3, addcB_out_gga(X1, X4, X3)) → mulcA_out_gga(X1, s(X2), X3)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
mulcA_in_gga(
x1,
x2,
x3) =
mulcA_in_gga(
x1,
x2)
0 =
0
mulcA_out_gga(
x1,
x2,
x3) =
mulcA_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4) =
U9_gga(
x1,
x2,
x4)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
addcB_in_gga(
x1,
x2,
x3) =
addcB_in_gga(
x1,
x2)
addcB_out_gga(
x1,
x2,
x3) =
addcB_out_gga(
x1,
x2,
x3)
U11_gga(
x1,
x2,
x3) =
U11_gga(
x1,
x2,
x3)
addcB_in_ggg(
x1,
x2,
x3) =
addcB_in_ggg(
x1,
x2,
x3)
addcB_out_ggg(
x1,
x2,
x3) =
addcB_out_ggg(
x1,
x2,
x3)
U11_ggg(
x1,
x2,
x3) =
U11_ggg(
x1,
x2,
x3)
U12_ggg(
x1,
x2,
x3,
x4) =
U12_ggg(
x1,
x2,
x3,
x4)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
ADDB_IN_GGA(
x1,
x2,
x3) =
ADDB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADDB_IN_GGA(X1, s(X2), X3) → ADDB_IN_GGA(X1, X2, X4)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADDB_IN_GGA(
x1,
x2,
x3) =
ADDB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADDB_IN_GGA(X1, s(X2)) → ADDB_IN_GGA(X1, X2)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADDB_IN_GGA(X1, s(X2)) → ADDB_IN_GGA(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULA_IN_GGA(X1, s(X2), X3) → MULA_IN_GGA(X1, X2, X4)
The TRS R consists of the following rules:
mulcA_in_gga(X1, 0, 0) → mulcA_out_gga(X1, 0, 0)
mulcA_in_gga(X1, s(X2), X3) → U9_gga(X1, X2, X3, mulcA_in_gga(X1, X2, X4))
U9_gga(X1, X2, X3, mulcA_out_gga(X1, X2, X4)) → U10_gga(X1, X2, X3, addcB_in_gga(X1, X4, X3))
addcB_in_gga(X1, 0, X1) → addcB_out_gga(X1, 0, X1)
addcB_in_gga(X1, s(X2), 0) → U11_gga(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, 0, X1) → addcB_out_ggg(X1, 0, X1)
addcB_in_ggg(X1, s(X2), 0) → U11_ggg(X1, X2, addcB_in_ggg(X1, X2, 0))
addcB_in_ggg(X1, s(X2), s(X3)) → U12_ggg(X1, X2, X3, addcB_in_ggg(X1, X2, X3))
U12_ggg(X1, X2, X3, addcB_out_ggg(X1, X2, X3)) → addcB_out_ggg(X1, s(X2), s(X3))
U11_ggg(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_ggg(X1, s(X2), 0)
U11_gga(X1, X2, addcB_out_ggg(X1, X2, 0)) → addcB_out_gga(X1, s(X2), 0)
addcB_in_gga(X1, s(X2), s(X3)) → U12_gga(X1, X2, X3, addcB_in_gga(X1, X2, X3))
U12_gga(X1, X2, X3, addcB_out_gga(X1, X2, X3)) → addcB_out_gga(X1, s(X2), s(X3))
U10_gga(X1, X2, X3, addcB_out_gga(X1, X4, X3)) → mulcA_out_gga(X1, s(X2), X3)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
mulcA_in_gga(
x1,
x2,
x3) =
mulcA_in_gga(
x1,
x2)
0 =
0
mulcA_out_gga(
x1,
x2,
x3) =
mulcA_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4) =
U9_gga(
x1,
x2,
x4)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
addcB_in_gga(
x1,
x2,
x3) =
addcB_in_gga(
x1,
x2)
addcB_out_gga(
x1,
x2,
x3) =
addcB_out_gga(
x1,
x2,
x3)
U11_gga(
x1,
x2,
x3) =
U11_gga(
x1,
x2,
x3)
addcB_in_ggg(
x1,
x2,
x3) =
addcB_in_ggg(
x1,
x2,
x3)
addcB_out_ggg(
x1,
x2,
x3) =
addcB_out_ggg(
x1,
x2,
x3)
U11_ggg(
x1,
x2,
x3) =
U11_ggg(
x1,
x2,
x3)
U12_ggg(
x1,
x2,
x3,
x4) =
U12_ggg(
x1,
x2,
x3,
x4)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
MULA_IN_GGA(
x1,
x2,
x3) =
MULA_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULA_IN_GGA(X1, s(X2), X3) → MULA_IN_GGA(X1, X2, X4)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MULA_IN_GGA(
x1,
x2,
x3) =
MULA_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MULA_IN_GGA(X1, s(X2)) → MULA_IN_GGA(X1, X2)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MULA_IN_GGA(X1, s(X2)) → MULA_IN_GGA(X1, X2)
The graph contains the following edges 1 >= 1, 2 > 2
(20) YES